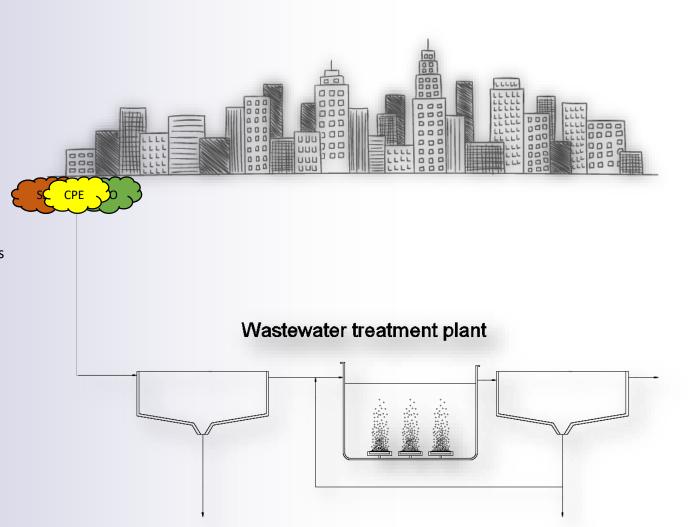
Eliminación de contaminantes de preocupación emergente mediante el empleo de la combinación de procesos avanzados

Autor:

Antonio Monteoliva García

Tutores:

Jose Manuel Poyatos Capilla y Jaime Martín Pascual


Máster oficial en Técnicas y Ciencias de la Calidad del Agua (IDEA)

Introducción

- Introducción
- Objetivos
- Resultados
- Conclusiones
- Aportaciones científicas

- Introducción
- Objetivos
- Resultados
- Conclusiones
- Aportaciones científicas

Introducción

L 78/40 ES

Diario Oficial de la Unión Europea

24.3.2015

DECISIÓN DE EJECUCIÓN (UE) 2015/495 DE LA COMISIÓN

de 20 de marzo de 2015

por la que se establece una lista de observación de sustancias a efectos de seguimiento a nivel de la Unión en el ámbito de la política de aguas, de conformidad con la Directiva 2008/105/CE del Parlamento Europeo y del Consejo

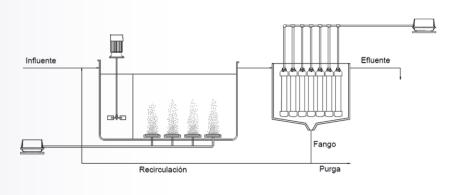
[notificada con el número C(2015) 1756]

(Texto pertinente a efectos del EEE)

LA COMISIÓN EUROPEA,

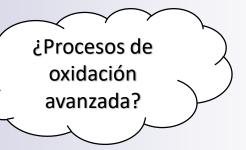
Visto el Tratado de Funcionamiento de la Unión Europea,

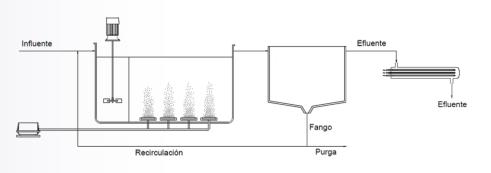
Vista la Directiva 2008/105/CE del Parlamento Europeo y del Consejo, de 16 de diciembre de 2008, relativa a las normas de calidad ambiental en el ámbito de la política de aguas por la que se modifican y derogan ulteriormente las Directivas 82/176/CEE, 83/513/CEE, 84/156/CEE, 84/491/CEE y 86/280/CEE del Consejo, y por la que se modifica la Directiva 2000/60/CE (1) y en particular su artícula 8 ter apartado 5



Introducción

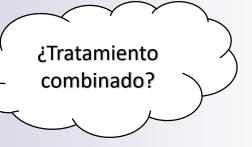
- Introducción
- Objetivos
- Resultados
- Conclusiones
- Aportaciones científicas

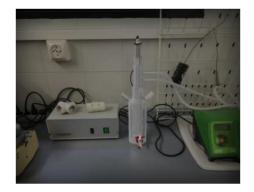




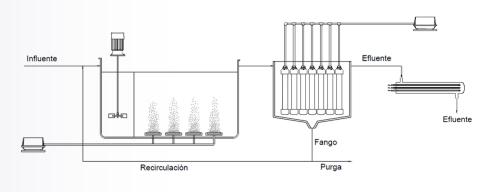
Introducción

- Introducción
- Objetivos
- Resultados
- Conclusiones
- Aportaciones científicas

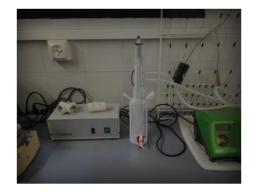




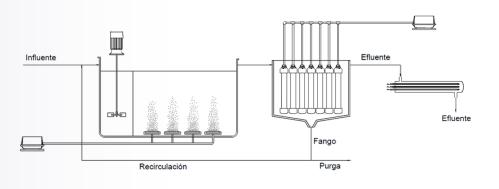
Objetivos


- Introducción
- Objetivos
- Resultados
- Conclusiones
- Aportaciones científicas

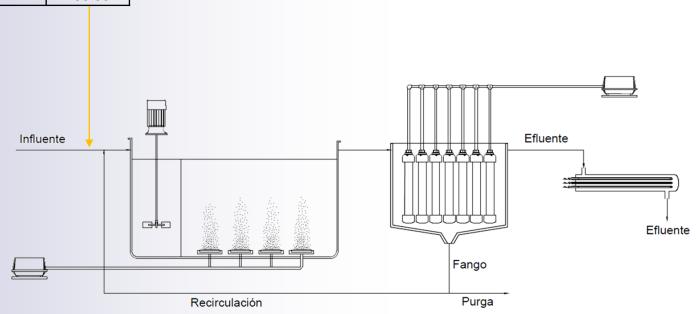




Objetivos


- Introducción
- Objetivos
- Resultados
- Conclusiones
- Aportaciones científicas

Resultados

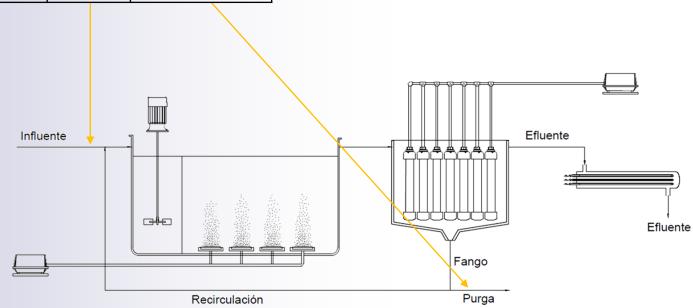

Introducción

Objetivos

Resultados

CPE Influente (μg/L)
CBZ 100.00
CPX 10.00
IBP 100.00

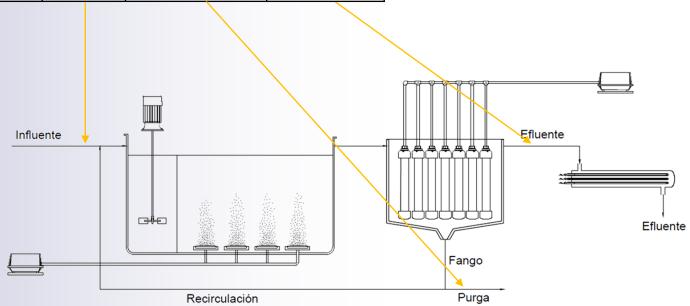
Conclusiones



Resultados

- Introducción
- Objetivos
- Resultados

Conclusiones

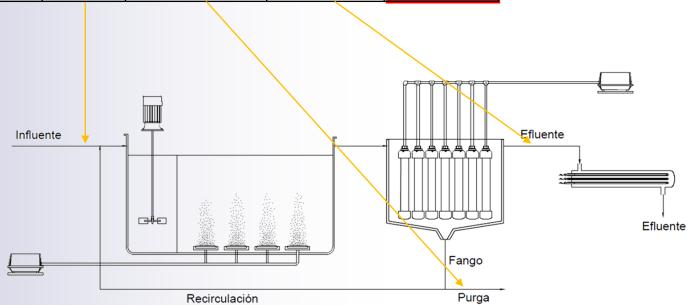


Resultados

- Introducción
- Objetivos
- Resultados

	СРЕ	Influente	Purga	Permeado	
		(µg/L)	(μg/kg lodo)	(μg/L)	
	CBZ	100.00	739.52 ± 331.36	33.77 ± 29.71	
	СРХ	10.00	2024.84 ± 670.52	0.00 ± 0.00	
I	IBP	100.00	0.00 ± 0.00	9.96 ± 11.41	

Conclusiones

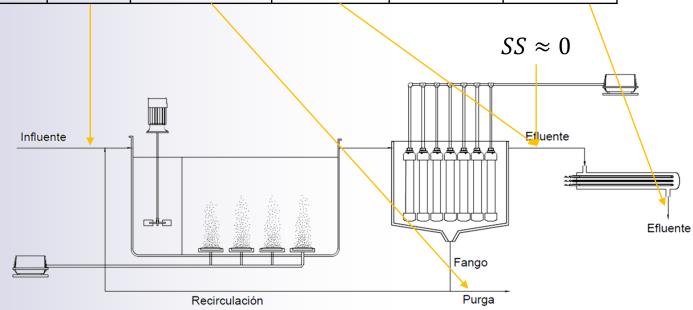


Resultados

- Introducción
- Objetivos
- Resultados

CPE	Influente Purga		Permeado	Eliminación	
	(µg/L)	(μg/kg lodo)	(μg/L)	BRM (%)	
CBZ	100.00	739.52 ± 331.36	33.77 ± 29.71	66.23 ± 29.71	
СРХ	10.00	2024.84 ± 670.52	0.00 ± 0.00	≈ 100	
IBP	100.00	0.00 ± 0.00	9.96 ± 11.41	90.04 <u>+</u> 11.41	

Conclusiones

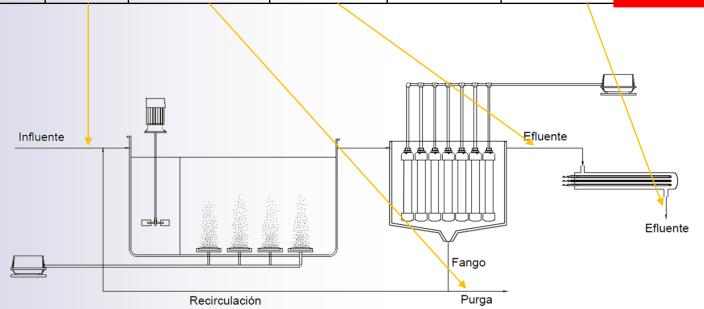


Resultados

- Introducción
- Objetivos
- Resultados

	СРЕ	Influente Purga		Permeado	Eliminación	Efluente POA	
		(μg/L)	(μg/kg lodo)	(μg/L)	BRM (%)	(μg/L)	
	CBZ	100.00	739.52 ± 331.36	33.77 ± 29.71	66.23 ± 29.71	0.00 ± 0.00	
	СРХ	10.00	2024.84 ± 670.52	0.00 ± 0.00	≈ 100	0.00 ± 0.00	
	IBP	100.00	0.00 ± 0.00	9.96 ± 11.41	90.04 ± 11.41	0.00 ± 0.00	

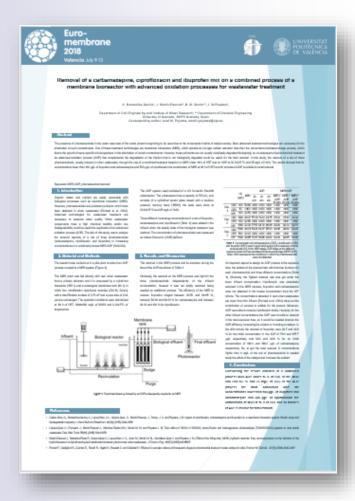
Conclusiones



Conclusiones

- Introducción
- Objetivos
- Resultados

	СРЕ	Influente (μg/L)	Purga (μg/kg lodo)	Permeado (μg/L)	Eliminación BRM (%)	Efluente POA (μg/L)	Eliminación Total (%)
T	CBZ	100.00	739.52 ± 331.36	33.77 ± 29.71	66.23 ± 29.71	0.00 ± 0.00	≈ 100
	СРХ	10.00	2024.84 ± 670.52	0.00 ± 0.00	≈ 100	0.00 ± 0.00	≈ 100
	IBP	100.00	0.00 ± 0.00	9.96 ± 11.41	90.04 ± 11.41	0.00 ± 0.00	≈ 100


Conclusiones

- Introducción
- Objetivos
- Resultados
- Conclusiones
- Aportaciones científicas

Aportaciones científicas

Removal of carbamazepine, ciprofloxacin and ibuprofen in real urban
wastewater by using light-driven advanced oxidation processes: kinetics
and effects of operative variables on the process efficiency

Short title: Removal of pharmaceuticals from whan wastewater by advanced oxidation processes

A. Monteoliva-Garcia, ¹⁰ J. Martin-Pascual, ¹⁰ M. M. Muhio, ¹ J. M. Poyatos, ¹⁰

Poppartment of Civil Engineering, University of Granada, 18071 Granada, Spain

Intuited Officer Removal Civil Engineering, University of Granada, 18071 Granada, Spain

* Department of Chemical Engineering, University of Granada, 18071 Granada, Spain

* corresponding author email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding author email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding surbor email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding surbor email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding surbor email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding surbor email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding surbor email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding surbor email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding surbor email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding surbor email: poyatos@gug.es, phose number: -34 959246154, Department of Civil Engineering, University of Granada, Spain

* corresponding surbor email:

Removal of a pharmaceutical mix from urban wastewater coupling membrane bioreactor with

advanced oxidation processes

A. Monteoliva-Garcia¹, J. Martin-Pascual², M. M. Muñio³, J. M-Poyatos^{4*}

Abstract

Emerging contaminants are a global concern as the Directive 2013/39°UE shows. Given the possible consequences that may lead to the presence of these compounds in water resources, different proposals are being evaluated to avoid their discharge into the environment. This study focuses on the use of a biological and physicochemical combined treatment formed by a membrane bioreactor with an H₂O₂/UV advanced oxidation process coupled subsequently, to degrade contaminants of emerging concern in real urban wastewater. The membrane bioreactor operated at 16 h of hydraulic retention time and 4250 mg/L of mixed luqor suspended solids. Different hydrogen peroxide dosages (25, 50 and 100

Eliminación de contaminantes de preocupación emergente mediante el empleo de la combinación de procesos avanzados

